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Table 1.1 The relationship between different liquid-gas ratio and initiation discharge

voltage
Distance of adjacent bubbles/ Liquid-gas ratio Initiation discharge voltage/
mm kv
11 6.6 9.5
13 7.8 8.7
15 9.0 7.5
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Figure 2.1 Apparatus scheme of synthesizing metal oxide nanoparticles by atmospheric-
pressure pulsed discharge plasma
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Figure 2.2 Voltage (black) and current (red) discharge waveforms
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Transmission electron microscope (TEM)
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High resolution transmission electron microscope (HRTEM)
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Energy dispersive X-ray spectroscopy (EDS)
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(a)

Figure 2.3 Photographs of feed solution (left) and product solution (right): (a) room
lighting; (b)Tyndall effect in solutions
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Figure 2.4 EDS mapping images of cerium oxide nanoparticles for cerium and oxygen
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Figure 2.5 (a), (b) TEM images (c) particle size distributions of cerium oxide
nanoparticles
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Figure 2.6 (a) HRTEM image and (b) SAED pattern of cerium oxide nanoparticles
synthesized with starch as stabilizer
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Figure 2.7 UV-vis spectra of feed solution and solution products containing CeO>
nanoparticles
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Figure 2.9 Grey TEM image of MgO nanoparticles with the corresponding EDS
mapping images and spectrum
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Figure 2.10 (a) HRTEM image and (b) SAED pattern of MgO nanoparticles
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Figure 2.11 TEM images of ZnO nanoparticles
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Figure 2.12 Grey TEM image of ZnO nanoparticles with the corresponding EDS
mapping images and spectrum
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Figure 3.1 Apparatus scheme of synthesizing CeO, nanoparticles by atmospheric-
pressure pulsed discharge plasma
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Figure 3.2 The schematic drawing of synthesis mechanism of CeO; nanoparticles by
atmospheric-pressure pulsed discharge plasma
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Figure 3.3 TEM images of CeO; nanoparticles synthesized without stabilizer
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Figure 3.4 UV-vis spectra of CeO, nanoparticles synthesized with different concentration
of starch
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Figure 3.5 TEM images and particle size distributions of CeO» nanoparticles with
different concentration of starch (a), (b) 0.1 wt%; (c), (d) 0.2 wt%; (e), (f) 0.4 wt%
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Figure 3.6 Slug flow reactor (a) straight capillary glass tube; (b) circular capillary glass
tube coil
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Figure 3.7 UV-vis spectra of solution products synthesized by the different slug flow
reactors
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Figure 3.8 Photographs of product after plasma treatment and feed solution
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Figure 3.9 TEM images of the product synthesized using ammonium cerium nitrate without a

stabilizer
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Figure 3.10 TEM images of the product synthesized using ammonium cerium nitrate with
starch as stabilizer
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Figure 3.11 EDS maps of the product synthesized using ammonium cerium nitrate with starch
as stabilizer
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Figure 3.12 TEM images of the product synthesized using ammonium cerium nitrate

with proline as stabilizer
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Figure 3.13 EDS maps and spectrum of cerium oxide nanoparticles synthesized using
ammonium cerium nitrate with proline as stabilizer

fefbt U 7 L R OfS RS 1% HRTEM f4 & SAED /<% — o bt L 7=, HRTEM
% (X3.14 a) OTHIZ, NAIFO Ce0° D (011) HEIZKEIKT S 0.29 nm ORE
& (100) HIZEEKRT 5 0.33 nm ORI RSN, Fiz, 05 Ce0, D
(MD mEIZERT S 0.31 nm OFESA RSN, H 3.14 b IZRT LI, TR+
D SAED /& — 2 TiX, Ce0; @ (011) mIZXIET AU I DRI NTZ, T DGR
(%, BEHIZSATED Ce0s & NLHIED Ce0y DM T NHFIET HZ L ETRTHDOTH-
oo BT L72X 912, T A<MEAFIE, OH VAR FUh el &8
FRIEMREN ALY U 7 U dssiZzeiEocH (B0 = -2.3V) *Thd, Lz
Do T, MBIRIET D 4fhiDv ) T AL A DO—FIL 3O Y 7 A A A NE TS
HU. Cex0; DHTEER & 72 5 KB LSER DN ER SN D ATREEN D, 7T A~ i T,
BT Loy DEZEC X > TRIGED @O R E RIS S hv, AR Al 72 5
SRR T e A ERR T, Ce0sF R FA2AERTDHZ EMTED ™

37




10 1/nm

Figure 3.14 (a) HRTEM image and (b) SAED pattern of cerium oxide nanoparticles

synthesized using ammonium cerium nitrate with proline as stabilizer
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Figure 4.1 Paschen curves obtained for helium, neon, argon, hydrogen and nitrogen*

4.1. 2 HFFEO BHY

43



AR T, SAVARET T A& AR T I 70—V AT b S BICHET
D02, T MET VIR THAT L2 LT Lz, 2OYRAT ALITEBIT 5105
HIEE DI % . WD v AT AEN T THREIT 5, SALAME ST A~Ic ko> T
REN IR ENE - EROTHHT L, AT I T —bHHT 25, Ky 27 Al
B DET DO TR 2,

4,2 EBRFE
4.2.1 ¥k

HALF B Y A (NaCl), 2 9AED Y &4 (KD, FAHES U 5 AFKFY
(NasS5S05 * 5H:0) . 7 > 7 v 38 L ORHK 2 EITFMBE TENOAF LT, T
L (HEE 99.99%L b) 13, TAMBRERASAN DA L7z, Z OB THIN &
TR TOEWEIE, SDICHMT 5 2 L2, BIR-TE 2N S AL,

4.2.2 EBHIE

FENZHE T TONRVABE S 7 A~ W= AT 77 a—4EE OB % X
4.2 1T, A7 70 —Kibam& LT, BEXYET U —H7ZE (300 mmx2.0
mn i.d., BEEMb TS, FPT-300) ZfEH L7-, TRy 73 (SS-
200-3, Swagelok) (ZH A & JFUBHE & [RIFRF 23~ 2 & T, &0 & KRSt & AR Lz,
AR L ORI O EIL, TNENEERB LOEERE Y v~ 87T 7 KR
7" (LC-10AD, E{EEUERT) THIEN L7z, 77 A< IREEO KA O A REF LA 20 £
Thol, IMIDOF ¥ BT U —H T ZEIZ1, 1@ lem O (Cu) Mz EME LCTHY
iFT-, EEBIEEM 4 A, 7T —AEM 3 KOG 7T RKOBEMAERE LT, WETHE
TR O BEEEIIK 26mm Td -7z, A/ S/V A PR (TE-HVP1510K300-NP, & EEiik =
) 1LV 1k OEEEE AT AMIEA Lz, ISR ORI 1. 5ml/ 57,
HADFREIIR 1. 3ml /5y Th o7z, IEJINE L 72 D200 T H ABEILE B
LT 5,

KREEF DOV AT KN EFRERIS, AT KEDZHIHE - BT 280E 08B mE iz,
AT LENZ, HERITED 0. IMPa (KR&E) 225 0. 4MPa ([ZHIfH S 4v, ESIEFT
BTS2 LN TE D, HHRIKITIRIER S 7 TY AT MIRA L, TAI o H AL A
Fy VT NEEAN L, ARJEDEY Y A —EDNRTHE L, TADOREITE
B THE L,

44



—
sl

Pressure
meter

St_op Metering .. o AC pulse supply

valve valve
B -
ol ] 5

l Solution pump

I- !‘j_L_
)
H

I Copper .J\v. O%
e . sheets oo
Oscilloscope
Argon g’fﬁ%
gas b, & Iy

meter !

Products

Pl M)
Cﬁée‘j | Pressure
salution

Figure 4.2 Apparatus of slug flow system with pulsed discharge plasma under

Back pressure valve

pressurized condition

4.2.3 M5k

BRI A<13. BEEROEENEIRISELS RN THY . ZOFED
—2>CThsd ° £ZC, /WY —F7F 7 ¢ (FLIR C3-X, Teledyne FLIR LLC,
Wilsonville, USA) ZHW T, @mETDOAT V7 u—7FF5 X~ Kt OEIRE 2 &
L7,

R A7 v (0ES) 1X, F¥ BT U —HT7REOFENGH lem OfLE
THE LTz, AT MUE, 77 A IREEO KIS R HER N 2 i 2 BRICBlE STz,
HRIRICIE, KEATF LT —KER (NaCl CTHEBMEZAIE) ZHV, EhEh
0.1MPa & 0.3MPa ORI THEHA L7, =XV —RAREZHET H7-0, Fvr Rz
—=" (TDS2024C, Tektronix Inc., OR, USA) ZH W T AT LADEILE L EIREBEL
7o E£72. OPwavetNEMET 2 a2 B a—Z 2V 7 Lim@mofifiedt 7 7 A /3ot
AV, FEEART ROVEEMTIZIX HR4000 (Ocean Insight, Tokyo) Zf#H L7-.

EALFEOREIXII— KA MY —CTHIE L7z, 1.owthD 3 bV oA (KI) &
0. lwth DT > 7 U KB EZIRG LI b O R MGIR E LT, 77 A~ Lt | Wi o
AUBRAFTFR SN TIvFERERY (L9, Ty 7 EHas THRAIZR -T2
R 16g OB AR L & EZHIE L7, 0. 0lmmol /L OF A HilE T K U w7 A (NayS:05)
K2 B2 by FTREHTIII LTz, RO 10 123 K91, 3 vRITTF AhilET
U D AERISL, BEITHR2IZHEE LTz, 30 BRICEaN N b E THELK T
l/\ NayS203 7k(§(fﬁ@ﬁ%%§ﬂﬁ L/flo é@é@ﬂﬁ%ﬁ@%%i\ NayS,04 @%}: ﬁ Lfg?) ) N ft:
4-1 THETZ S, WEF V< L5 EEVIEL, FHE LT,

m(Na,$,03) X w(Na,S,03)
M(Na,S,03) X V(sample)

Concentration of total oxidation species =

45

(4-1)



where m(Na,S,0s3) is weight of Na>S,03; aqueous solution used in titration;
®(Na;S,03) is mass fraction of Na,S,03-5H,0 in the aqueous solution;
M(Na;S,03) is molar mass of Na,S,03-5H,0, with a value of 248;
V(sample) is volume of sample.
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Figure 4.3 Thermal images and visible images of the system under (a) 0.4 MPa and (b)
0.1 MPa
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0.1MPa & 0.3MPa DKHFITIRELIZ NV ARET T A~ DE AT FLEK
4. 412" LT, AT MV FIZIE,H 298010, 02° 520, OH L i
EORIGNET I NVFEPNBE S, SV AME S 7 A~ ZdH L=tk BRDEDT
CHRIGHEFEDN EFIZAER S NI Z E 3005, -7 /03 O31E, 700~900nm D
IRAMERC TR B S 40 2. ZAUTHEED 4p-4s ER "TIT XD 4p LD » 7
ICHkT 5, £7-. 656 nm DAY MILEEYEO B — 7 [ TEFIRAKFZ KIS L. 309 nm
DIFRNARY MILENOE—7 X 00 T P HIVOIFEITERKNT S ) VAT LEHD
EHICEED, AT AN TRAET HIEMEROIE IR E < B3, My —2
FENEL LTz, TV IrOE—27 2, O 7 VAV ERFKEBEOE—7 i
FERBEIMLCTEY, VAT KENREL 72D 00 Vv EN T2 HVOMIRE
MELRDHZEEZRLTWD, ZOHA/RIET T A~ AT LTI, LOEEDSE
R TCTUANDBBELLT K RoTNDLDMNE LItV

4. 3.3 RFRALFEDOIRE

A K, KIR/IGIE T 7 X<=2TIZ O & H PN REAET D Z LN
HAILTUW e, OH 7 U AVITEWISHRA Ukl BB, i bkFE, A v Eoiih
TR LA AT D O, ERLFEOREIZI VA M) —THIETE, VAT AN
THAELTIEHREOREL RS, TORMREER 4.1 [TRT,

47



Table 4.1. Concentration of total oxidation species under different pressure

Pressure/MPa ¢ [oxidization species]/mM
0.1 0.12
0.2 0.21
0.3 0.25
0.4 0.29
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Figure 4.5 Voltage discharge waveforms under different pressure
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Figure 4.6 Current discharge waveforms under different pressure
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Pulse energy = f V(t) x I(t) dt (J/pulse) (4-2)

Discharge energy = Pulse energy X Pulse frequency (J/s) (4-3)

Table 4.2 Input energy calculation under different pressure

Entry Pressure/MPa Energy/W Average/W
1 15.05
2 0.1 15.31 15.18
3 15.18
4 15.84
5 0.2 15.91 16.03
6 16.33
7 15.63
8 0.3 15.79 15.73
9 15.75
10 14.09
11 0.4 14.53 14.42
12 14.65
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where A, and A; are peaks intensities of the products under different pressure and feed
solution at 664 nm, respectively.
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Figure 5.2 Optical emission spectrums from plasma generated in MB at 0.1 and 0.3 MPa
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Figure 5.4 UV-vis spectra of solution and products under different pressure with 7
electrodes

Table 5.1 Decomposition rate of MB with 3 electrodes

Pressure/MPa Electrodes number Decomposition rate/ %
0.1 3 20.25
0.2 3 13.72
0.3 3 9.95

Table 5.2 Decomposition rate of MB with 7 electrodes

Pressure/MPa Electrodes number Decomposition rate/ %
0.1 7 48.42
0.2 7 32.36
0.3 7 28.57
0.4 7 19.89
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Energy ef ficiency

Co (9/L) x Q (L/h) X Decomposition rate (%) X 1—10 (5-2)

Discharge energy (kW)

where Cy and Q are the concentration and flow rate of MB, respectively.

Table 5.3 Energy and energy efficiency under different system pressure

Pressure/MPa Energy/W Energy efficiency/g-kWh!
0.1 15.18 0.044
0.2 16.03 0.029
0.3 15.73 0.026
0.4 14.42 0.018
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